Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Vaccines (Basel) ; 9(10)2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1438760

ABSTRACT

In response to the ongoing COVID-19 pandemic, the global effort to develop high efficacy countermeasures to control the infection are being conducted at full swing. While the efficacy of vaccines and coronavirus drugs are being tested, the microbiome approach represents an alternative pathophysiology-based approach to prevent the severity of the infection. In the current study, we evaluated the action of a novel probiotic Lactobacillus plantarum Probio-88 against SARS-COV-2 replication and immune regulation using an in vitro and in silico study. The results showed that extract from this strain (P88-CFS) significantly inhibited the replication of SARS-COV-2 and the production of reactive oxygen species (ROS) levels. Furthermore, compared with infected cells, P88-CFS treated cells showed a significant reduction in inflammatory markers such as IFN-α, IFN-ß, and IL-6. Using an in silico molecular docking approach, it was postulated that the antiviral activity of L. plantarum Probio-88 was derived from plantaricin E (PlnE) and F (PlnF). The high binding affinity and formation of hydrogen bonding indicated that the association of PlnE and PlnF on SARS-COV-2 helicase might serve as a blocker by preventing the binding of ss-RNA during the replication of the virus. In conclusion, our study substantiated that P88-CFS could be used as an integrative therapeutic approach along with vaccine to contain the spread of the highly infectious pathogen and possibly its variants.

2.
J Biomol Struct Dyn ; 39(11): 4175-4184, 2021 07.
Article in English | MEDLINE | ID: covidwho-1343548

ABSTRACT

SARS coronavirus (COVID-19) is a real health challenge of the 21st century for scientists, health workers, politicians, and all humans that has severe cause epidemic worldwide. The virus exerts its pathogenic activity through by mechanism and gains the entry via spike proteins (S) and Angiotensin-Converting Enzyme 2 (ACE2) receptor proteins on host cells. The present work is an effort for a computational target to block the residual binding protein (RBP) on spike proteins (S), Angiotensin-Converting Enzyme 2 (ACE2) receptor proteins by probiotics namely Plantaricin BN, Plantaricin JLA-9, Plantaricin W, Plantaricin D along with RNA-dependent RNA polymerase (RdRp). Docking studies were designed in order to obtain the binding energies for Plantaricin metabolites. The binding energies for Plantaricin W were -14.64, -11.1 and -12.68 for polymerase, RBD and ACE2 respectively comparatively very high with other compounds. Plantaricin W, D, and JLA-9 were able to block the residues (THR556, ALA558) surrounding the deep grove catalytic site (VAL557) of RdRp making them more therapeutically active for COVID-19. Molecular dynamics studies further strengthen stability of the complexes of plantaricin w and SARS-CoV-2 RdRp enzyme, RBD of spike protein, and human ACE2 receptor. The present study present multi-way options either by blocking RBD on S proteins or interaction of S protein with ACE2 receptor proteins or inhibiting RdRp to counter any effect of COVID-19 by Plantaricin molecules paving a way that can be useful in the treatment of COVID-19 until some better option will be available.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Probiotics , Antiviral Agents/pharmacology , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL